The Effect of Liquid Water on Thunderstorm Charging

Review of the Saunders et al. (1991) paper

Kyle Chudler
ATS 780
Motivation

• Liquid water content is an essential ingredient to charge separation events
  • Charge separation of only one sign occurs with low LWC
  • Magnitude of charge transfer too low to be of significance in thunderstorms

• Other variables have been tested with liquid water content held constant
  • Temperature, ice crystal size and velocity

• Need to better understand the impact of liquid water content
Review

• Thunderstorms are observed to be separated into distinct charge layers
  • Charge separation creates electric potential difference within cloud
  • This is what leads to lightning

• Charge separation likely occurs due to non-inductive charging
  • Riming graupel pellets collide with smaller ice crystals
  • Sign of charge left on colliders a function of temperature, liquid water content, fall speed, other things
  • Exact mechanism for charge separation not fully understood
Non-inductive Charging in a Nutshell

Charge Sign Reversal Temp

Temperature
Non-inductive Charging in a Nutshell

Charge Sign Reversal Temp
Proposed Charging Mechanisms: Positive Charging

- Caused by temperature gradient within surface of riming graupel
- Ice filaments grow out from graupel
  - Warmer on tips of filaments due to latent heat of deposition/freezing
  - More mobile protons move to base of filament, leaving tip negatively charged
  - Edge of filament breaks off, leaving positively charged graupel
Proposed Charging Mechanisms: Positive Charging

• Caused by temperature gradient within surface of riming graupel
• Ice filaments grow out from graupel
  • Warmer on tips of filaments due to latent heat of deposition/freezing
  • More mobile protons move to base of filament, leaving tip negatively charged
  • Edge of filament breaks off, leaving positively charged graupel
Proposed Charging Mechanisms: **Positive Charging**

- Caused by temperature gradient within surface of riming graupel
- Ice filaments grow out from graupel
  - Warmer on tips of filaments due to latent heat of deposition/freezing
  - More mobile protons move to base of filament, leaving tip negatively charged
  - Edge of filament breaks off, leaving positively charged graupel
Proposed Charging Mechanisms: **Positive Charging**

- Caused by temperature gradient within surface of riming graupel
- Ice filaments grow out from graupel
  - Warmer on tips of filaments due to latent heat of deposition/freezing
  - More mobile protons move to base of filament, leaving tip negatively charged
  - Edge of filament breaks off, leaving positively charged graupel
Proposed Charging Mechanisms: **Positive Charging**

• Caused by temperature gradient within surface of riming graupel

• Ice filaments grow out from graupel
  • Warmer on tips of filaments due to latent heat of deposition/freezing
  • More mobile protons move to base of filament, leaving tip negatively charged
  • Edge of filament breaks off, leaving positively charged graupel
Proposed Charging Mechanisms: Positive Charging

• Caused by temperature gradient within surface of riming graupel
• Ice filaments grow out from graupel
  • Warmer on tips of filaments due to latent heat of deposition/freezing
  • More mobile protons move to base of filament, leaving tip negatively charged
  • Edge of filament breaks off, leaving positively charged graupel
Proposed Charging Mechanisms: Negative Charging

• Difference in contact potential between graupel and ice pellets
  • Substantial amount of ions exist in quasi-liquid layer around ice particles
  • $\text{H}^+$ transfer upon contact between the two leaves graupel with an excess of electrons (negative charge)

• Dislocations in ice lattice upon freezing
  • Dislocation in ice lattice between graupel and accreting ice leads to positively charged dislocations, which can break off on contact with ice crystals.
Proposed Charging Mechanisms

• Both negative and positive charging mechanisms happening simultaneously

• Environmental factors determine which one “wins out”

• Ex: Dislocation charging
  • Warmer temperatures $\rightarrow$ slower freezing $\rightarrow$ less dislocations $\rightarrow$ less negative charging of graupel
  • Lower liquid water content $\rightarrow$ fewer drops on surface $\rightarrow$ faster freezing $\rightarrow$ more dislocations $\rightarrow$ more negative charging of graupel
Experimental Set Up

Air Flow
3 m/s

Metal Rod (simulated graupel)

Cloud chamber with water vapor and ice crystals

Metal Rod w/ Thermometer (measures LWC via latent heat)

Charge on rod measured at various effective LWCs and temperatures
Results

• Charge Sign Reversal Temp = Zero-crossing of temperature lines
  Ex: When LWC is 0.9, reversal temp is -21 °C

• LWC increase -> Reversal temp decrease

• Negative charging at LWC < 0.22 g/m³ and T < -16 °C
Results

• Negative charge independent of temperature once you get below -21 °C

• Strong positive charge at low LWCs

Fig. 5. Charge transfer to the riming target per crystal separation event as a function of effective liquid water content at temperatures between -21°C and -32°C. (Note the different positive and negative vertical scales.)
Discussion

- Temperature and LWC effect efficiency of various charge separation mechanisms

Temperature

- Less dislocation (slower freezing)
- Decreased contact potential

LWC

- More dislocation (faster freezing)
- Increased contact potential
- Higher supersaturation for ice filament growth
- More vapor available for ice filament growth
- Less vapor available for ice filament growth
- More dislocation (fewer droplets freeze faster)

Positive charging mechanism
Negative charging mechanism
Fewer drops freeze fast even at warmer temps

Less drops for QLL contact potential, but still high supersaturation for ice filament/surface growth

Fig. 7. The positive and negative target charging zones as a function of temperature and effective liquid water content.
Discrepancy with Takahashi (1978)

• Takahashi’s work did not find evidence of the negative charging at high temp/low LWC regimes

• Possible explanations:
  • Measurement method may have enhanced surface rime break up
  • Overestimation of liquid water content
Conclusions

• Liquid water content decrease leads to reversal temperature (+ → -) increase

• Very low can lead to different effects
  • Negative charging at high temperature
  • Positive charging at low temperature

• Differences with Takahashi paper may be due to their method of charge calculation, which may have enhanced positive charge results